国产丶欧美丶日本不卡视频_a篇片在线观看_性欧美乱妇COME_亚洲aⅴ男人的天堂在线观看

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

當前位置首頁 > 新聞中心

蛋白質外聚物中多糖的比例——結論、致謝!

來源:上海謂(wei)載 瀏覽 1217 次 發布(bu)時(shi)間:2021-10-12


四、結論


油和/或 Corexit 的(de)存(cun)在會導致 EPS 的(de)蛋(dan)(dan)白質(zhi)(zhi):多(duo)糖(tang)(tang)(tang)比率更高,并(bing)(bing)在中(zhong)胚層(ceng)實(shi)驗中(zhong)降低 SFT。 在這些實(shi)驗中(zhong),SFT 與(yu) 蛋(dan)(dan)白質(zhi)(zhi):具有負斜(xie)率的(de) EPS 多(duo)糖(tang)(tang)(tang)。 當(dang)開闊的(de)海洋 水域(yu)和兩(liang)種不同的(de)沿海水處理(li)進行了比較, 蛋(dan)(dan)白質(zhi)(zhi)趨(qu)勢(shi):多(duo)糖(tang)(tang)(tang)為 CEWAF > DCEWAF > WAF ≥ Control 并(bing)(bing)且對于 SFT,它(ta)是相(xiang)反的(de), CEWAF < DCEWAF < WAF ≤ 對照。 因(yin)此,SFT 與(yu)膠(jiao)體 EPS 中(zhong)的(de)蛋(dan)(dan)白質(zhi)(zhi):多(duo)糖(tang)(tang)(tang)比率成(cheng)反比。


當(dang)中宇(yu)宙水柱的(de)不同尺(chi)寸(cun)分(fen)(fen)(fen)(fen)數(shu)(shu)(shu)為 相比(bi)(bi)之下(xia),我們(men)發(fa)現 EPS 膠體(ti)可以(yi)降低 SFT 蛋白(bai)質:多糖比(bi)(bi)例,表(biao)明(ming)有(you)效(xiao)的(de)生物乳化 蛋白(bai)質的(de)容量。 粒(li)子濾波中 SFT 的(de)比(bi)(bi)較 分(fen)(fen)(fen)(fen)數(shu)(shu)(shu) (< 0.45 μm) 和(he) EPS 膠體(ti)分(fen)(fen)(fen)(fen)數(shu)(shu)(shu) (< 0.45 μm 和(he) > 3 kDa),對于真正溶解的(de)部(bu)分(fen)(fen)(fen)(fen) (< 3 kDa),它(ta)是 表(biao)明(ming)只有(you)前兩(liang)個包含 EPS 的(de)部(bu)分(fen)(fen)(fen)(fen)具有(you)容量 以(yi)降低 SFT,而 < 3 kDa 級分(fen)(fen)(fen)(fen)顯示與以(yi)下(xia)相同的(de) SFT 純海(hai)水或只有(you)真正溶解有(you)機碳的(de)海(hai)水。


顯微(wei)(wei)鏡技術(即 CLSM 和 SEM)證實(shi),正如(ru)預測的(de)(de)(de)那樣,蛋(dan)白質主要(yao)在(zai)空氣(qi) - 水(shui)界(jie)面富集, 強烈(lie)影響空氣(qi)/水(shui)界(jie)面處的(de)(de)(de) SFT 治療。 這(zhe)些技術還(huan)可(ke)(ke)視(shi)化(hua)了不(bu)同(tong)的(de)(de)(de)聚集體(ti)尺寸 和它們(men)的(de)(de)(de)分散,以及聚集體(ti)形(xing)成(cheng)(cheng)的(de)(de)(de)重要(yao)性(xing) 通過陰離子EPS組(zu)(zu)分部(bu)分之(zhi)間的(de)(de)(de)Ca2+"橋接"。 SFT 可(ke)(ke)能會發生微(wei)(wei)小的(de)(de)(de)變化(hua),與蛋(dan)白質:多糖比率的(de)(de)(de)變化(hua)相吻(wen)合(he),這(zhe)可(ke)(ke)能是 pH 值變化(hua)的(de)(de)(de)原(yuan)因(十分之(zhi)一) 單(dan)(dan)位(wei)),如(ru) EPS 模型化(hua)合(he)物所(suo)示,這(zhe)可(ke)(ke)能在(zai) CMC 周圍最為突出(chu)。 此外,我們(men)表明蛋(dan)白質和酸性(xing)多糖的(de)(de)(de) EPS 模型成(cheng)(cheng)分比 Corexit 導致海水(shui)中(zhong)(zhong)膠束的(de)(de)(de)自組(zu)(zu)裝甚至 當(dang)這(zhe)些成(cheng)(cheng)分的(de)(de)(de)濃度(du)很低時(shi)。 這(zhe)個 表明 EPS 在(zai)形(xing)成(cheng)(cheng)方面與 Corexit 相同(tong)或(huo)更(geng)有效 乳液。 然而,關于相互(hu)作用的(de)(de)(de)更(geng)系統的(de)(de)(de)研究(jiu) 不(bu)同(tong)組(zu)(zu)件的(de)(de)(de)不(bu)同(tong)組(zu)(zu)合(he),以及更(geng)多型號 單(dan)(dan)獨的(de)(de)(de)化(hua)合(he)物,可(ke)(ke)能需要(yao)更(geng)多地闡明在(zai)我們(men)的(de)(de)(de)中(zhong)(zhong)宇宙實(shi)驗中(zhong)(zhong)觀察到(dao)的(de)(de)(de)復雜性(xing)。


致謝


這項研(yan)究得到了(le)墨西哥(ge)灣的(de)(de)資助 支持名為 ADDOMEx 的(de)(de)聯盟研(yan)究的(de)(de)研(yan)究計劃(hua) (微生物對(dui)分散(san)劑(ji)和(he)(he)油的(de)(de)聚集和(he)(he)降解(jie) Exopolymers) 聯盟。 原始數據可以(yi)在(zai)海灣找(zhao)到 墨西哥(ge)研(yan)究倡(chang)議信息和(he)(he)數據合作(zuo)組織(zhi) (GRIIDC) 在(zai)網址 //doi.org/10.7266/N7PK0D64; //doi.org/10。 7266/N78P5XZD; //doi.org/10.7266/N74X568X; //doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. //doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. //doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. //doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. //doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. //doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. //doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. //doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. //doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. //doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. //doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, //doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. //doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. // doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. //doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. //doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. //doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. //doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. //doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. //doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. //doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. //doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. //doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. //doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. //doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. //www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. //doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. //doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. //doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. //doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. //doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. //doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. //doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. //doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. //doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. //doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. //doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. //doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. //doi.org/10.1016/j.marchem.2018.09.005. (In press).


 Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. // doi.org/10.3389/fmicb.2017.02369.



蛋白質外聚物中多糖的比例——摘要、簡介

蛋白質外聚物中多糖的比例——方法

蛋白質外聚物中多糖的比例——結果與討論

蛋白質外聚物中多糖的比例——結論、致謝!